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1. Introduction 
 

Optical soliton perturbation is one of the most 

sought after areas of research in the field of nonlinear 

optics that is applicable to optical fibers, couplers, 

metamaterials and metasurfaces. There are sevearl types 

of perturbation that are studied in this context using a 

variety of mathematical approaches that lead to 

meaningful and worthy results in this field [1-25]. While 

sevearl models are available to address this, the current 

paper will consider the well-known Sasa-Satsuma 

equation (SSE) that is basically the perturbed nonlinear 

Schrödinger’s equation (NLSE) that is the global model 

studied all over in the context of fiber optic dynamics. 

Here all of the perturbations are of Hamiltonian type 

thus rendering SSE completely integrable for Kerr law 

nonlinearity. This paper is thus going to take a fresh look 

at the model using one of the well-known mathematical 

techniques that is the F -expansion scheme. It will 

reveal several forms of soliton solutions namely bright, 

dark, singular as well as combo-type solitons. The 

results are all derived and discussed in the subsequent 

sections. 

 

 
2. Governing model 
 

The dynamic model for optical soliton perturbation 

namely the SSE, with Hamiltonian type perturbations, 

that stems out of NLSE is given by [2, 5, 23, 24]:  
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where ( , )z t  is a complex variable and 

, , , , , , 54321 sssss  are real parameters. In (1), the first 

term represents the evolution of optical pulses, while the 

second term, namely the coefficient of 
1s  is the group-

velocity dispersion (GVD) and the coefficient of 3s  

represents self-phase modulation (SPM) with Kerr law 

nonlinearity. From the perturbation terms 3s  gives the 

coefficient of third order dispersion (3OD) and finally 
4s  

and 5s  are due to self-steepening and nonlinear dispersion. 

The perturbation parameter   accounts for quasi-

monochromaticity, a factor that accounts for smallness of the 

perturbative effects.  

By substituting complex function 

),(),(=),( tzivtzutz  , where ),( tzu  and ),( tzv  are 

real functions of z  and t , into equation (1), we obtained a 

coupled nonlinear partial differential equations. We discuss 

the existence of a Lagrangian and the invariant variational 

principle for SSE. SSE is reduced to a system of a coupled 

second order equation and is expressed in the following 

form:  
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The consistency conditions are expressed in [10, 

18], furthermore, the system of split SSE satisfies above 

conditions, then we have a functional integral ),( vuJ  

in the following form as inidicated below: 
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where dtdzd = . By choosing the boundary on 
zu  

and 
zv  to be such that the boundary terms vanish, we 

get the following Lagrangian L :  
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 It is deemed necessary to check our calculations, we use 

L  in the Euler-Lagrange equations:  
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which lead to equation (1). In order to solve SSE, we assume 

that  

),(=      )),((exp)(=),( zktztitz      (6) 

 

where   and   are real parameters, ),( tz  is the linear 

phase shift function with k  and   are the normalized wave 

vector and frequency. By substituting from equation (6) into 

equation (1), we obtained real and imaginary parts of DNLS 

equation as follows:  
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By integrating equation (8) and taking the constant of 

integration to be zero, in order to make the obtained equation 

and equation (7) compatible, we get the values of   and   

as follows:  
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Then equations (8) and (9) are reduced to ordinary 

differential equations as follows  
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3.  Soliton solutions 
 
We implement the improved auxiliary equation 

mapping method with to retrieve soliton solutions of 

SSE. The advantage of this method is that it proves us 

with a new and more general traveling wave solutions 

for many nonlinear evolution equations, it provides a 

variety of soliton solutions. SSE dynamical equation has 

general solution in series form as given by:  
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where 

nnnn ddccbbaaa  ,......... , ,......... , ,......... , ,........., 12110

 are arbitrary constants, the value of )(F  and )(' F  

satisfy the following two cases  
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where zkt  =  and 2,3,4,6=, ii  are arbitrary 

constants and k  and   are wave length and frequency 

respectively. The constant positive integer m  is determined 

later. By using Eqs. (11) and (12) into Eq. (10), we obtained 

algebraic system of equations. 

Balancing the highest order nonlinear term and the 

highest order linear partial derivative term in equation (10) 

yields the value of 2=m . The solution of equation (10) 

takes the form  
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By inserting equation (13) into equation (10) and 

collecting coefficients of 

).0,1,2,3,..=0,1;=)(()(' nijFF ij  , and setting each 

of the coefficients to zero yields an over-determined system 

of algebraic equations. Upon solving the system, parameters 

,,,,, 21210 bbaaa  
212 ,, ddc  can be determined as: 
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where the sufficient conditions of stability of solutions 

as follows:  
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Families of solutions I:  

 

By substituting from equation (14) into equation 

(13), we obtain soliton solutions of equation (1):  
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where 42
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where 423 4=   ;   0>2 ;   0>4   and the 

value of (1,1),=),(    1),(1,   1)1,(  , 1,1)( .  
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where   and   are any choices of 1 or 1 , and p  is an 

arbitrary constant, 0>2 . 
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Families of solutions II:  

 

By inserting from equation (15) into equation (13), 

we obtain the following soliton solutions of SSE:  
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where 62

2

4 4    and 0<2 . 

The solutions list (16)-(25) represents bright, dark, 

singular as well as different forms of combo optical solitons 

as well as singular periodic solutions. Thus, a novel variety 

of soliton solutions are reported here, that are derived using 

F -expansion scheme for SSE, for the first time. 

 

 

4. Conclusions 
 

This paper secured a variety of optical soliton solutions 

for the SSE by the aid of F -expansion scheme. The 

respective sufficient conditions of integrability are also listed 

for these solitons to exist. The results of this paper are 

indeed very encouraging that serves as a way to further 

future research in this field. The type of nonlinearity will be 

extended and generalized to higher order and additional 

perturbation terms will be incorporated. These will lead to 

additional soliton solutions provided the extended and or 

generalized model passes the Painleve test of integrability. 

Such results are awaited at this time and will be reported in 

future. 
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